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Abstract—The performance of linear multi-user multiple-input
multiple-output (MU-MIMO) systems has been extensively stud-
ied for classical statistical channel models. In contrast, there is lit-
tle analysis for ray-based models, which are physically motivated,
feature prominently in standards and have been experimentally
validated. Thus, we present a novel analysis framework for zero
forcing (ZF) and maximal ratio combining (MRC) applicable to
such models. Specifically, using a central result for averaging in
the angular domain, we derive accurate expressions for ZF signal-
to-noise ratio and MRC signal, interference and noise powers.
The remarkably simple expressions offer the following insights
into the effects of the propagation environment. While ZF is
robust to parameters such as cluster and subray angle spreads,
MRC interference is highly sensitive to them. We show that
the performance scales linearly with the number of antennas,
and that it degrades with narrow angle spreads and as the
propagation moves toward the antenna end-fire. Finally, by
evaluating the variance of the MRC interference, we observe
that an approximation to the MRC SINR widely used for classical
statistical models, is inaccurate in ray-based channels.

I. INTRODUCTION

Theoretical performance analysis of linear processing
schemes for multi-user multiple-input multiple-output (MU-
MIMO) is extremely well advanced for classical statistical
channel models. Early work on Rayleigh fading channels has
been extended to a wide range of more complex and realistic
channels. For example, results are now emerging on complex,
heterogeneous, correlated Rician channels for both uplink
(UL) and downlink (DL) systems employing maximal ratio
combining (MRC) [1], zero-forcing (ZF) [2] and minimum
square error (MMSE) combining [3], [4]. In contrast, the
literature on performance analysis for ray-based channels is
very sparse. In this paper, we use the phrase ray-based to
denote a wide class of channel models where a user’s channel
is broken down into rays and the angles of the rays are
specified by some statistical distribution. This covers many
of the models described as spatial, directional or geometric.

Ray-based models have several advantages over the classical
statistical channel models: they are more physically based;
have a direct link to the antenna layout and the propagation
environment; and apply over a wide range of frequencies.
For example, recent ray-based measurements are used to
characterize the channel at 2.53 GHz [5] and at 28 GHz and
73 GHz [6]. For these reasons, ray-based channels form the
basis of many standardized models [7].
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However, the mathematical difficulties attached to such
models have obstructed the progress in the analysis of these
types of channels. Many papers therefore necessarily focus
on simulation [8], [9]. Some analysis of ray-based models
in regard to favorable propagation and channel hardening
has appeared in [10]–[12]. Furthermore, [13] analyzes the
achievable rate with maximal ratio transmission (MRT) in
downlink transmissions. The bulk of the work to date makes
restrictive assumptions regarding the ray angles and their
angular distributions. For example, it is often assumed that
the ray angles [10] or the sine of the ray angles [13], [14]
are uniform over [0, 2π]. More recently, work has appeared
on DL conjugate beamforming and regularized ZF [15] with
pilot contamination but again the angles are restricted to be
uniform.

It is clear that the performance analysis methodology for
such channels is in its infancy and is extremely challenging.
For this reason, the methodology developed here focuses on
the initial case of a single cell and perfect channel state infor-
mation (CSI). Although exact analysis of linear processing in
MU-MIMO systems is almost certainly intractable, we note
that moment-based approaches are promising for moderate
to large systems and for massive MIMO. This observation
is based on the fact that expectations of cross products of
channels are the building blocks of the analysis of favorable
propagation, channel hardening, MRT and MRC. This is the
area where most analytical work has made progress. Further,
we note that moment based approaches were used successfully
in [1]–[4] for complex statistical channel models.

Hence, in this paper we develop a novel methodology to
analyze MRC and ZF in UL systems for an extremely wide
range of ray distributions. This includes all commonly used ray
models, such as those containing clusters of rays and angles
with wrapped Gaussian and Laplacian distributions. Hence,
this work is considerably more general than previous work in
the area. In particular we make the following contributions:
• We derive an accurate approximation to the mean signal-

to-noise ratio (SNR) of ZF;
• We derive exact results for the mean signal power,

interference power and noise power of MRC;
• We demonstrate that the high variance of the interfer-

ence in MRC makes traditional signal-to-interference-
and-noise ratio (SINR) approximations inaccurate;

• We provide remarkably simple, closed form results which
deliver many insights into the link between performance



and the system parameters and ray distributions;
• Specific conclusions from the analysis verified by simula-

tion include: the robustness of ZF to angular parameters;
the sensitivity of MRC to angular parameters; the fact that
performance scales linearly with antenna numbers and the
performance degradation that occurs with limited angle
spread or a shift in the ray angles away from broadside.

II. SYSTEM MODEL

We examine a single-cell MU-MIMO system where a
centrally located base station (BS) with an M -antenna uniform
linear array (ULA) serves L single-antenna users within a
single resource block. We consider UL transmission assuming
perfect channel knowledge at the BS.

A. Channel Model

The M × 1 channel vector between the BS and the lth user
is modeled by the generic clustered ray-based model:

hl =

C∑
c=1

S∑
s=1

γ(l)
c,sa(φ(l)

c,s), (1)

where C is the number of clusters and S is the num-
ber of subpaths per cluster. The vector a(φ

(l)
c,s) =

[1, ej2πδ sinφ(l)
c,s . . . ej2π(M−1)δ sinφ(l)

c,s ]T represents the M × 1
steering vector pertaining to subray s in cluster c sent from
user l, and δ is the antenna spacing in wavelengths. The
angle of arrival (AoA) of each ray is modeled as φ

(l)
c,s =

φ
(l)
c + ∆

(l)
c,s with φ

(l)
c being the central angle of the rays

of cluster c, and ∆
(l)
c,s being the deviation of ray s from

that central angle. The ray coefficients, γ(l)
c,s, are modeled

as γ
(l)
c,s = β

(l)1/2
c,s ejθ

(l)
c,s where β

(l)
c,s is the ray power and

θ
(l)
c,s ∼ U [0, 2π] are uniform phases. Hence, the total link gain

for user l is β(l) =
∑C
c=1

∑S
s=1 β

(l)
c,s. The classical path-loss

and shadowing model is used for the link gains so that

β(l) = AXl

(
dl
d0

)−Γ

, (2)

where dl is the distance between user l and the BS, A is the
received power at the reference distance d0 in the absence of
shadowing, Γ is the pathloss exponent, and Xl models the
effects of shadow fading, taken from a lognormal distribution
with zero mean and variance σ2

sf.

B. SINR and Spectral Efficiency

The received signal at the BS can be written as

y = ρ
1
2Hs + n, (3)

where ρ is the uplink transmit power (assumed equal for all
users), H = [h1,h2, ...,hL] is the M × L composite channel
matrix and s = [s1, s2, ..., sL]T , is the vector of user symbols,
with E[si] = 0 and E[|si|2] = 1. The additive white Gaussian
noise at the receiver is n ∼ CN (0, σ2

nIM). This received signal

is processed using a ZF or MRC linear receiver at the BS,
producing for user l the signal

yl = ρ
1
2wH

l hlsl +

L∑
l′ 6=l

ρ
1
2wH

l hl′sl′ + wH
l n. (4)

The weight vector for user l, wl, is the lth column of the
matrix:

WMRC , H, (5)

WZF , H(HHH)−1, (6)

for MRC or ZF, respectively. The resulting SINR is:

SINRl =
ρ|wH

l hl|2

ρ
∑L
l′ 6=l |wH

l hl′ |2 + σ2
n‖wl‖2

, (7)

leading to the spectral efficiency: SEl = log2(1 + SINRl).

III. AVERAGE SINR AND SPECTRAL EFFICIENCY

We examine the ergodic cell-wide SE of an arbitrary user,
l, by first analyzing the expectation over the ray angles, φ(l)

c,s,
and phases, θ(l)

c,s. Hence, we average throughout the paper over
all the variables in the channel except for the ray powers,
β

(l)
c,s. This approach is used for two reasons. First, it leads to

expressions where the effects of the ray powers can be seen.
Secondly, there are a wide variety of models for the β(l)

c,s terms
so further averaging is best done on a case-by-case basis or by
simulation. The expected SE is simplified with the following
common approximation

Eθ,φ[SEl] ≈ log2(1 + Eθ,φ[SINRl]), (8)

where Eθ,φ[·] refers to expectation over the ray angles and the
phases of the ray coefficients. Hence, we derive expressions
for Eθ,φ[SINRl] for MRC and ZF processing.

A. MRC Processing

By substituting the MRC weighting vector in (5) into (7),
we see that the SINR for user l is

SINRMRC
l =

ρ|hHl hl|2

ρ
∑L
l′ 6=l |hHl hl′ |2 + σ2

n‖hl‖2
. (9)

Averaging the SINR over the AoAs and ray phases is facili-
tated by the following approximation [1], [2], [16]

Eθ,φ[SINRMRC
l ] ≈ ρEθ,φ[|hHl hl|2]

ρ
∑L
l′ 6=l Eθ,φ[|hHl hl′ |2] + σ2

nEθ,φ[‖hl‖2]
.

(10)

The approximation in (10) is of the form E[X/Y ] ≈
E[X]/E[Y ], which has been shown to be accurate for moderate
to large M , and relies on Y having a small variance relative
to its mean [16], a condition satisfied for classical channel
models. In Section V, we thus examine the variability in
the MRC interference in ray-based channels, demonstrating
that in some cases it exhibits large fluctuations, making the
approximation less accurate than in classical channel models.



1) Signal: To derive the expected signal power we require

Eθ,φ[|hHl hl|2] = Eθ,φ

[∣∣∣∣∣
C,S∑
c,s

C,S∑
ĉ,ŝ

γ(l)∗
c,s γ

(l)
ĉ,ŝa

H(φ(l)
c,s)a(φ

(l)
ĉ,ŝ)

∣∣∣∣∣
2]

= Eθ,φ

[
C,S∑
c,s

C,S∑
ĉ,ŝ

C,S∑
c′,s′

C,S∑
ĉ′,ŝ′

γ(l)∗
c,s γ

(l)
ĉ,ŝγ

(l)∗
c′,s′γ

(l)
ĉ′,ŝ′

× aH(φ(l)
c,s)a(φ

(l)
ĉ,ŝ)a

H(φ
(l)
c′,s′)a(φ

(l)
ĉ′,ŝ′)

]

= M2

C,S∑
c,s

Eθ,φ
[
|γ(l)
c,s|4

]
+

C,S∑
c,s

C,S∑
ĉ,ŝ6=c,s

β(l)
c,sβ

(l)
ĉ,ŝEφ

[
|aH(φ(l)

c,s)a(φ
(l)
ĉ,ŝ)|

2
]

+M2

C,S∑
c,s

C,S∑
c′,s′ 6=c,s

β(l)
c,sβ

(l)
c′,s′ , T1 + T2 + T3, (11)

where
∑C,S
c,s =

∑C
c=1

∑S
s=1. The simplifications in (11)

follow from properties of the ray power statistics, namely:
Eθ,φ[γ

(l1)∗
c1,s1γ

(l2)
c2,s2 ] = 0 for all cases except c1 = c2, s1 =

s2, l1 = l2 (i.e. the same user-cluster-subray combination).
This logic recurs throughout the remaining derivations. The
middle term in (11), T2, requires two expectations according
to whether c = ĉ or c 6= ĉ. Breaking T2 into these two cases
gives T2 = Kcε

(l)
c +Ksε

(l)
s , where ε(l)c = β(l)2 −

∑C
c=1 β

(l)2
c ,

ε
(l)
s =

∑C
c=1 β

(l)2
c −

∑C,S
c,s β

(l)2
c,s and β(l)

c is the cluster power,
β

(l)
c =

∑S
s=1 β

(l)
c,s. The constants Kc and Ks relate to the ray

angle distribution and are defined below. First, Kc is given by

Kc,Eφ
[
|aH(φ(l)

c,s)a(φ
(l)
ĉ,ŝ)|

2
]
=

M−1∑
m=0

M−1∑
m′=0

|Eφ[ej2πδ(m
′−m) sinφ]|2,

(12)
which follows because distinct rays are i.i.d. and (c, s) 6=
(ĉ, ŝ). Secondly, Ks is given by

Ks , Eφ
[
|aH(φ(l)

c,s)a(φ
(l)
c,ŝ)|

2
]

=

M−1∑
m=0

M−1∑
m′=0

|Eφ[ej2πδ(m
′−m)(sinφ

(l)
c,ŝ−sinφ(l)

c,s)]|2. (13)

Further details of the numeric computation of Kc and Ks are
given in Sec. IV. Finally, noting that T1 + T2 = M2β(l)2,

Eφ[|hHl hl|2] = M2β(l)2 +Kcε
(l)
c +Ksε

(l)
s . (14)

2) Interference: The expected interference power requires

Eθ,φ
[
|hHl hl′ |2

]
= Eθ,φ

[
C,S∑
c,s

C,S∑
ĉ,ŝ

C,S∑
c′,s′

C,S∑
ĉ′,ŝ′

γ(l)∗
c,s γ

(l)
ĉ,ŝγ

(l′)∗
c′,s′ γ

(l′)
ĉ′,ŝ′

× aH(φ(l)
c,s)a(φ

(l′)
ĉ′,ŝ′)a

H(φ
(l′)
c′,s′)a(φ

(l)
ĉ,ŝ)

]

=

C,S∑
c,s

C,S∑
c′,s′

β(l)
c,sβ

(l′)
c′,s′E

[
|aH(φ(l)

c,s)a(φ
(l′)
c′,s′)|

2
]

= Kc

C,S∑
c,s

C,S∑
c′,s′

β(l)
c,sβ

(l′)
c′,s′ = Kcβ

(l)β(l′). (15)

3) Noise: Finally, to compute the noise power, we require:

Eθ,φ
[
‖hl‖2

]
= Eθ,φ

[
C,S∑
c,s

C,S∑
ĉ,ŝ

γ(l)∗
c,s γ

(l)
ĉ,ŝa

H(φ(l)
c,s)a(φ

(l)
ĉ,ŝ)

]

=

C,S∑
c,s

β(l)
c,sEφ

[
aH(φ(l)

c,s)a(φ(l)
c,s)] =

C,S∑
c,s

β(l)
c,sM = Mβ(l).

(16)
Substituting (14), (15), and (16) into (9), gives the final closed-
form approximation for the MRC SINR of user l, (17), given
at the top of the following page. Note that (17) gives the mean
SINR approximation solely in terms of the powers and the two
expectations in (12) and (13), derived in Sec. IV.

B. ZF Processing
It is well known that the ZF SINR can be written as

SINRZF
l =

ρ

((HHH)−1)l,l
. (18)

Via the approximation motivated and verified in [2], we write

Eθ,φ[SINRZF
l ] ≈ ρ

Eθ,φ[((HHH)−1)l,l]
. (19)

Since the matrix inverse in (19) is intractable for ray-based
models, we adopt the Neumann series approach in [2]. We
write the matrix inverse in the denominator of (18) as:

(HHH)−1 = (Eθ,φ[HHH] + HHH− Eθ,φ[HHH])−1

= (X + X′)−1 = (IL + X−1X′)−1X−1 (20)

where X = Eθ,φ[HHH] and X′ = HHH − Eθ,φ[HHH].
As seen in [2] and [17], (20) can be approximated using a
second-order Neumann approximation.

Eθ,φ[(IL + X−1X′)−1X−1] ≈
Eθ,φ[(IL −X−1X′ + X−1X′X−1X′)X−1]

= X−1 − 0 + X−1Eθ,φ[X′X−1X′]X−1, (21)

using Eθ,φ[X′] = Eθ,φ[HHH − Eθ,φ[HHH]] = 0, and the
fact that X is deterministic. Expanding the expectation in (21)
and simplifying, we obtain:

Eθ,φ[(HHH)−1]l,l ≈ [X−1Eθ,φ[HHHX−1HHH]X−1]l,l

= X−1
l,l Eθ,φ[HHHX−1HHH]l,lX

−1
l,l ,

(22)
which follows since X = Eθ,φ[HHH] is diagonal. Through a
similar process to that in (14), (15), and (16), we have:

Eθ,φ[(HHHX−1HHH)l,l] =

Eθ,φ

[
L∑
l′=1

(hHl hl′)(X
−1)l′,l′(h

H
l′ hl)

]

=

L∑
l′=1

1

Mβ(l′)
Eθ,φ

[
C,S∑
c,s

C,S∑
ĉ,ŝ

C,S∑
c′,s′

C,S∑
ĉ′,ŝ′

γ(l)∗
c,s γ

(l′)
ĉ,ŝ γ

(l′)∗
c′,s′ γ

(l)
ĉ′,ŝ′

× aH(φ(l)
c,s)a(φ

(l′)
ĉ,ŝ )aH(φ

(l′)
c′,s′)a(φ

(l)
ĉ′,ŝ′)

]

= Kc

(
L
β(l)

M
− 1

Mβ(l)

C,S∑
c,s

β(l)2
c,s

)
+Mβ(l), (23)



Eθ,φ[SINRMRC
l ] ≈

ρ
{
M2β(l)2 +Kcε

(l)
c +Ksε

(l)
s

}
ρKc

∑L
l′ 6=l β

(l)β(l′) + σ2
nMβ(l)

(17)

where we substituted (X−1)l,l = ((Eθ,φ[HHH])−1)l,l =
1

Mβ(l) using (16). Substituting (23) and (16) into (22) gives

Eθ,φ[(HHH)−1]l,l

≈

(
1

Mβ(l)

)2[
Kc

(
L
β(l)

M
− 1

Mβ(l)

C,S∑
c,s

β(l)2
c,s

)
+Mβ(l)

]
.

(24)
Hence, the closed-form approximation for the average ZF
SINR with respect to ray angles and phases, (25), follows.

C. Implications of the SINR Results

Equations (17) and (25) are powerful tools for interpreting
the behaviour of ray-based massive MIMO channels.

MRC Processing: From (17), we observe the following key
properties. As ρ → ∞, the SINR reaches a ceiling from the
residual interference always present with MRC. As M →∞,
the SINR grows asymptotically linearly with M . A strong link
gain, β(l), relative to β(l′), l′ 6= l, is clearly beneficial. Also,
we observe that the spread of ray powers plays a role. In
(17), large values of ε(l)c and ε

(l)
s improve the SINR. Using

the result that νi = 1/n ∀i minimizes
∑n
i=1 ν

2
i , it can be

shown that minimum spread in the ray powers (i.e. a constant
ray power) maximises both ε(l)c and ε(l)s . Hence, spreading the
link gain equally over the rays is beneficial, agreeing with our
understanding that increased diversity increases performance.

The ray distribution affects the mean SINR through the Kc

and Ks parameters. SINR grows linearly with Ks which is
a function of ray variation within a cluster. Note that intra-
cluster variation only affects the signal power so narrow angle
spread within a cluster is beneficial as it creates many similar
rays for the desired user which align to increase signal power.
Inspection of (13) suggests that Ks increases with low angle
spread and this is verified in Sec. V. The relationship of SINR
to Kc is more complex. Differentiating (17) with respect to
Kc we find that (17) is a decreasing function of Kc for typical
operating parameters. The link between Kc and the actual
angular PDF is not obvious as the Kc has a relatively complex
formulation. Nevertheless, the trends can be inferred from
the interpretation of Kc as the interference power between
two distinct rays. For small numbers of antennas, traditional
thinking applies. Angular PDFs with larger variance (wider
angle spread) spread the rays, reducing the chance of two
rays being similar and hence reducing interference. Therefore,
increased angle spread is beneficial for small numbers of
antennas. For large numbers of antennas, we use the initial
formulation for Kc in (12), giving

Kc = Eφ

[ ∣∣∣∣∣
M−1∑
m=0

exp
(
j2πδm

(
sin(φ

(l)
ĉ,ŝ)− sin(φ(l)

c,s)
))∣∣∣∣∣

2 ]
.

(26)

The maximum of the variable in (26) occurs at sinφ
(l)
c,s =

sinφ
(l)
ĉ,ŝ so it is important to identify scenarios where very close

agreement between the sines of the ray angles occurs. Since
the sine function changes most rapidly around 0 (broadside),
close agreement near broadside is less likely. However, the
sine function changes least rapidly near ±π/2 (end-fire) so
here close agreement is more likely. This observation is more
important for large M as Kc ≤M2. Hence, for large numbers
of antennas, increased angle spread puts more ray powers near
to end-fire which inflates Kc. Thus, a cross-over occurs where
larger angle spread increases SINR for smaller numbers of
antennas and decreases SINR for larger numbers.

ZF Processing: The trends shown by (25) are the same as for
MRC for M , Kc and the ray powers: asymptotic linear growth
in M , a cross-over in the Kc behaviour and the desirability
of large β(l) and small ray variation in the ray powers. The
only different trend is the lack of a ceiling on the SINR as
ρ increases due to the interference cancellation of perfect ZF.
However, for MRC the Kc parameter scales the interference
term, a dominant feature of MRC. In contrast, for ZF the
Kc parameter appears in the denominator as a term which is
O(L/M). Hence, the effect of Kc, and therefore the angular
distributions, is less pronounced for ZF than for MRC.

IV. AVERAGING IN THE ANGULAR DOMAIN

The SINR expressions in (17) and (25) both require Kc

which involves expectations of the form Eθ,φ[ejz sinφ] where
z = 2πδm,m ∈ Z and φ is the AoA of an arbitrary user’s ray
written as φ = φc + ∆, where φc is the central cluster angle
and ∆ is the subray offset.

Lemma 1: We have Eφ[ejz sinφ] =
∑∞
n=−∞ ψ(n)Jn(z),

where ψ(n) is the characteristic function of φ, ψ(n) =
Eφ[ejnφ], and Jn(.) is the nth order Bessel function of the
first kind.

Proof: The proof is given in the Appendix.
As the rays are modeled in clusters, we have

ψ(n) = Eφ[ejnφ] = Eφ[ejn(φc+∆)]

= Eφ[ejnφc ]Eθ,φ[ejn∆] = ψc(n)ψs(n),

where ψc(n) and ψs(n) are the characteristic functions of the
central cluster angles and subray offsets. From Lemma 1,

Eφ[ejz sinφ] =

∞∑
−∞

ψc(n)ψs(n)Jn(z). (27)

Note that (27) is completely general and applies to any
clustered ray-based model where φc,s = φc + ∆c,s. Fur-
thermore, in most cases the characteristic functions decay
very rapidly so that (27) can be approximated by a small
number of terms. For example, a common model is to have
a wrapped normal distribution for φc, φc ∼ N (µc, σ

2
c ), and a



Eθ,φ[SINRZF
l ] ≈ ρM2β(l)2

Kc

(
Lβ

(l)

M − 1
Mβ(l)

∑C,S
c,s β

(l)2
c,s

)
+Mβ(l)

(25)

Laplacian for ∆c,s, ∆c,s ∼ L( 1
σs

), so that the PDF of ∆c,s

is f∆(x) = (2σS)−1 exp (−|x|/σS). This choice gives the
characteristic functions ψc(n) = exp (jnµc − n2σ2

c /2) and
ψs(n) = (1 + n2σ2

s )−1. This specific solution gives

Eφ[ejz sinφ] =

∞∑
n=−∞

ejnµc−
n2σ2c

2

1 + n2σ2
s
Jn(z). (28)

Note that the coefficients of Jn(z) behave like
n−2 exp (−n2σ2

c /2) and therefore decay very quickly.
Hence, a reasonable approximation may be obtained through
2N + 1 terms of the summation, giving

Eφ[ej2πδm sinφ] ≈
N∑

n=−N

ejnµc−
n2σ2c

2

1 + n2σ2
s
Jn(2πδm). (29)

Similarly, Ks in (14) requires the following result.
Lemma 2: We have

Eφ[exp(jz(sinφc,ŝ − sinφc,s))]

=

∞∑
n=−∞

∞∑
m=−∞

ψs(n)ψ∗s (m)ψc(n−m)Jn(z)Jm(z). (30)

Proof: The proof follows similar arguments to Lemma 1
and is omitted for reasons of space.
Substituting Lemmas 1 and 2 in (12) and (13) gives Kc and
Ks which completes the derivation of (17) and (25).

V. NUMERICAL RESULTS

Unless otherwise stated, the numerical results were gen-
erated using parameter values in Table I. The users were
randomly located in a cell of radius r, outside an exclusion
radius r0. The parameter ρ was chosen such that the tenth
percentile of mean SNR, defined as SNRl = ρβl

σ2
n

, was 0 dB.
The cell wide performance statistics were computed for 104

TABLE I
PARAMETERS FOR NUMERICAL RESULTS

Parameter Values
cell radius, r 100 m

exclusion radius, r0 10 m
average SNR outage value 0 dB

average SNR outage probability 10%
pathloss exponent, Γ 3.2

shadow fading standard deviation, σsf 8.2 dB
link gain reference distance, d0 1 m

number of users, L 10
number of clusters, C, (Scen. 1, Scen. 2) 3, 20
number of subrays, S, (Scen. 1, Scen. 2) 16, 20

cluster angle mean, µc 0°
cluster angle variance, σ2

c , (Scen. 1, Scen. 2) (14.4°)2, (76.5°)2

subray angle variance, σ2
s , (Scen. 1, Scen. 2) (1.28°)2, (15°)2

user locations (’drops’) and the associated link gains, βl in (2).
Once the link gains are generated from (2), the cluster powers,

β
(l)
c , are set to decay exponentially from β

(l)
1 to β(l)

C in order to
create unequal cluster powers. The inter-cluster ratio β(l)

C /β
(l)
1

is set at 0.1 unless otherwise stated. Finally, all subpaths have
the same power, so that β(l)

c,s = β
(l)
c /(CS). For each drop,

the average over the ray angles and ray coefficient phases was
evaluated using the appropriate analytical expression in Sec.
III. These results were validated via simulation, where nu-
merical averaging was performed over 103 angles drawn from
the distribution described in Sec. IV. Hence, all performance
metrics in Sec. V, such as SNR, signal power and interference
power, are to be understood as the averaged values, where
the averaging is over the ray angles and phases for a single
drop of β(l)

c,s values. We consider the following two scenarios.
Scenario 1, representing a relatively sparse channel with a
narrow angular spread, is based on the recent measurement
data in [5]. Scenario 2, which represents a rich scattering
environment with a wide angular spread, is based on [7].

Fig. 1 shows the CDF of the ZF SNR (19), with the
analytical results obtained via (25). In order to validate the
approximations used in deriving (25), in addition to Scenarios
1 and 2, we consider extremely narrow angle spreads (σc = 5°,
σs = 2°, C = 3, S = 16). We include results for µc = 0° and
µc = 60°. We consider M = 150. The results indicate that
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Fig. 1. ZF SNR CDF; Scen. 1, 2, and very narrow angle spreads; M = 150.

ZF SNR performance is very robust to changes in the channel
parameters, with Scenarios 1 and 2 yielding nearly identical
results. Closer examination of the CDFs in the figure inset
shows that, as expected, the richer, more diverse environment
of Scenario 2 slightly outperforms Scenario 1. This gap
increases when the dominant direction moves away from array
broadside, or when the scattering becomes extremely narrowly
focused. The results also shows very high accuracy of (25) for
all realistic parameter values. Only in the case of the extremely
focused radiation, and near the array endfire, the Neumann
series expansion leads to a noticeable approximation error.



Turning to MRC performance, in Fig. 2 we examine the
distribution of the average signal power, with the analytical
results in (14). The results are shown for µc = 0° with M =
25, 100 and 150 BS antennas. As with ZF SNR, MRC signal
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Fig. 2. CDF of MRC signal power for Scen. 1 and 2; µc = 0°.

power is insensitive to the channel parameters, with Scenarios
1 and 2 resulting in nearly identical performance. While not
shown to preserve figure clarity, the MRC signal strength also
shows negligible sensitivity to changes in µc.

To demonstrate the robustness of the signal power to prop-
agation characteristics, Fig. 3, shows the impact of the mean
cluster angle µc on Kc and Ks in (17), and the effect of the
cluster power distribution on εc and εs. The left subfigure

0 20 40 60 80

10
2

10
3

10
-2

10
0

0

0.2

0.4

0.6

0.8

1

Fig. 3. MRC signal stability.

demonstrates that Kc and Ks have minor impact on the
MRC signal power in (14). Constant Ks decays rapidly with
increasing subray spread, as does Kc for Scenario 1. These
constants scale εc and εs in (17), which relate to the spread
of the cluster powers. The right subfigure plots εc and εs

as a function of the inter-cluster power ratio, β(l)
C /β

(l)
1 . The

change in εc and εs is small relative to the very large variation
in β

(l)
C /β

(l)
1 . Furthermore, the trend of the two variables is

opposite, which further minimizes the variability of the signal
power. As a result of these trends, and the dominance of M2

in (14), the MRC signal power is robust to ray-based model
parameters.

Next, we investigate the interference properties of MRC,
which as per (15), is a function of Kc and the user link
gains. We thus again focus on Kc. To add to the insights
gained from Fig. 3, in Fig. 4 we plot Kc as a function of BS
array size M . In order to more clearly illustrate the trends,
we scale Kc by M . We observe that for small array sizes,
the narrow angle spread results in larger interference than for
wide angle spreads. However, the interference grows faster
with M for wide angle spreads. As such, for large array size,
the interference in the propagation environment of Scenario 2
dominates. Note that in order to demonstrate that the crossover
effect can occur for realistic array size, in Fig. 4 we have
shown Scenario 1 with a larger angle spread of σs = 10°. The
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Fig. 4. Normalized MRC interference power.

trends observed in Fig. 4 confirm the predictions discussed in
Sec III. Indeed, the cross-over occurs earlier for larger µc.

As discussed in Sec. III, a common approximation for
the mean SINR for classical statistical models relies on the
variance of the interference being small relative to its mean
[16]. In order to establish the validity of such an approx-
imation for ray-based models, we examine the variance of
the interference in Fig. 5. In order to identify the impact
on the interference variance of channel sparsity (C, S) and
angular spread independently, in addition to the parameters
of Scenarios 1 and 2, we also show two additional cases of
sparse channels with wide angular spread and vice versa .
Plotted for reference is the case of i.i.d. Rayleigh fading, as
well as the variance normalised by 1/M2. The results clearly
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Fig. 5. MRC interference power variance.



demonstrate that the interference variance is much higher than
that of a classical Rayleigh channel. We note that the variance
is higher for channels with greater sparsity, and increases
further as the propagation direction moves away from array
broadside. These trends have a very important implication -
the approximation for the expected SINR routinely used in the
literature, should not be used for analyzing the performance of
ray-based channels, unless higher order terms are considered.

Fig. 6 plots the ZF and MRC SINR as a function of M .
In order to directly validate the trend predicted by (17) and
(25), rather than computing cell-wide averaging, we consider
a single random drop for each. As predicted by the analysis,
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Fig. 6. ZF and MRC SINR. Results shown for an example drop.

both the ZF and MRC SINR grow linearly with M . We
note that (25) is an accurate approximation to the simulated
SNR for a wide range of M . As predicted by the analysis
of MRC interference variance, the MRC SINR approximation
is weak, in particular for the sparse Scenario 1. The right
subfigure examines the corresponding signal and interference
components. The approximations in (14) and (15) are shown
to be extremely tight, confirming that the gap in the SINR
approximation (17) is due to the first-order Laplace expansion.

VI. CONCLUSIONS

We have derived accurate expressions for the average ZF
SNR and MRC signal, interference and noise powers. We have
demonstrated that while ZF is robust to angular parameters,
MRC interference is highly sensitive. Our closed form ex-
pressions show that the performance scales linearly with the
number of antennas, and degrades with narrow angle spreads
and as the propagation moves toward the antenna end-fire.
Finally, we showed that the commonly used approximation
for MRC SINR is inaccurate for ray-based analysis.

APPENDIX
PROOF OF LEMMA 1

Let f(φ) be the unwrapped PDF of φ and fw(φ) be the
wrapped PDF on [−π, π]. The required expectation is

Eφ[ejz sinφ] =

∫ ∞
−∞

ejz sinφf(φ)dφ =

∫ π

−π
ejz sinφfw(φ)dφ.

(31)

Now, for any wrapped PDF [18], we have

fw(φ) =
1

2π

∞∑
n=−∞

ψ(n)e−jnφ, (32)

where
ψ(n) = Eφ[ejnφ] =

∫ ∞
−∞

ejnφf(φ)dφ. (33)

Hence,
Eφ[ejz sinφ] =

∫ π

−π
ejz sinφ 1

2π

∞∑
n=−∞

ψ(n)e−jnφdφ

=
1

2π

∞∑
n=−∞

ψ(n)

∫ π

−π
ej(z sinφ−nφ)dφ. (34)

The integral in (34) can be computed as∫ π

−π
ej(z sinφ−nφ)dφ = 2

∫ π

0

cos(z sinx−nx)dx = 2πJn(z),

(35)
using [19, pp. 452-453]. Hence the answer follows.
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